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• One-point spatial perspective implies a decreasing ‘‘spatial discount rate’’.
• Our spatial view of the world corresponds to hyperbolic, not constant discounting.
• The continuous limit corresponds to logarithmic discounting.
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a b s t r a c t

Spatial perspective implies a hyperbolic spatial discount rate. To the extent that discounting with respect
to space and to time are analogous, this result provides further evidence that hyperbolic discounting is a
good description of how we view the world.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction and result

Economists use constant discounting in most dynamic models,
because this is the only form of discounting that leads to time con-
sistency of optimal plans. Constant discounting is certainly famil-
iar, i.e., customary in our profession, but it is not clear whether it
is part of the more general cultural DNA. Ramsey (1928) remarked
‘‘My picture of theworld is drawn in perspective. . . . I applymy per-
spective not merely to space but also to time.’’ Perspective applied
either to space or to time does seem part of our cultural DNA.

Perspective means that distant objects appear smaller, but be-
yond that it is not clear whether it is consistent with constant or
hyperbolic discounting, or something entirely different. This note
shows that perspective applied to space corresponds to hyper-
bolic discounting. This result is significant as a reminder that the
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widespread adoption of constant discounting is due to its time con-
sistency, and not necessarily because it provides a good description
of howpeople see theworld.Many other papers have discussed the
plausibility of hyperbolic discounting, both in the context of indi-
vidual decision problems and for societal problems such as climate
change (Laibson, 1997; Barro, 1999; Cropper and Laibson, 1999;
Heal, 1998, 2001; Harris and Laibson, 2001; Karp, 2005; Karp and
Tsur, 2011). I do not review those arguments, becausemy objective
here is merely to establish that, to the extent we accept the anal-
ogy between space and time, our view of the world corresponds to
hyperbolic, not exponential, discounting.

I establish this claim using a model of one-point perspective.
Fig. 1 shows a long (possibly infinite) railroad in one-point perspec-
tive. The rails, which are parallel in reality, appear to converge at
the horizon. The horizontal lines, the railroad ties (hereafter ‘‘ties’’),
are actually evenly spaced, butmore distant ties appear to be closer
together and shorter. The letters A, B, C, . . . denote both the suc-
cessive ties, and also their apparent length. The diagonals between
ties, the dashed lines, identify by their intersection the location of
the tie midway between any two ties, in actual (as distinct from
apparent) distance.

The person looking at this railroad is standing in front of the first
tie, A. If this person were ubiquitous, she would correctly perceive

http://dx.doi.org/10.1016/j.econlet.2014.11.017
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econlet.2014.11.017&domain=pdf
mailto:karp@berkeley.edu
http://dx.doi.org/10.1016/j.econlet.2014.11.017


88 L. Karp / Economics Letters 126 (2015) 87–90
the rails to be parallel and the ties to be evenly spaced and of equal
length. Because she is located in a particular position, the rails
appear to converge and the ties to get closer together and shorter in
the distance. The taller she is, the more her view resembles that of
the floating deity. The height of the triangle is Q and the apparent
distance between the ties E and A, is αQ .

I require some notation in order to state the proposition. I use

L0, L1, L2 . . . Ln−1, Lanchor

(instead of A, B, C, . . .) to denote the consecutive ties and their
apparent length. I fix the tie Lanchor in physical space; for example,
it is the tie located one mile from the first tie, L0. In Fig. 1 we can
identify tie E with Lanchor. The number of ties from the first tie to
the anchor is n. Continuing the space–time analogy, the distance
between L0 and Lanchor corresponds to the amount of time from
today until a future event; n is the number of intervals between the
fixed total distance (or time). The parameter n is key in providing a
general result. Increasing n is analogous to measuring time in days
instead of years.

The parameter α is a measure of perspective. An extremely tall
person would correctly perceive that the distance between L0 and
Lanchor comprises only a small part of this long railroad. For this per-
son, α ≈ 0. For a person with eyes close to the ground, it appears
that the distance between L0 and Lanchor comprises nearly the en-
tire railroad. For this person, α ≈ 1. Thus, a larger value of α corre-
sponds to higher spatial discounting. The actual distance between
a particular tie and L0 is the spatial analog of the amount of time
between the present and some future date. The fact that more dis-
tant ties appear shorter, to a person at L0, is the spatial analog of the
idea that events that are distant in time should receive less weight
in a welfare calculation.

With this analogy, I define β
(n)
i =

L(n)i

L(n)i−1
for i = 1, 2, 3, . . . , n

and β0 =
L0
L0

= 1, as the spatial discount factor between two
consecutive ties, from the standpoint of the person at L0. The
corresponding discount rate is r (n)

i = 1 −
1

β
(n)
i

. I find the formula

for r (n)
i , and use that to show that r (n)

i decreases in i. In this sense,
perspective with respect to space implies hyperbolic discounting.
The superscript (n) is a reminder that the apparent length of the i’th
tie, and thus the corresponding discount factor and rate, depend on
the actual proximity of the ties: e.g. whether they are spaced every
foot or every meter. I normalize by setting L(n)

0 = 1 for all n. This
normalization and the definition of βi imply

L(n)
i = Π i

j=1β
(n)
j . (1)

Thus, L(n)
i is the spatial analog of the present value of the i’th tie.

DefineM = {2, 4, 8, 16, . . .}, the set of integer powers of 2.

Proposition 1. For n ∈ M, the spatial discount factor is

β
(n)
k =

n − (n + 1 − k) α

n − (n − k) α
(2)

and the spatial discount rate is

r (n)
k =

α

n − (n + 1 − k) α
(3)

for 1 ≤ k ≤ n. With this formula

dr (n)
k

dk
= −

α2

(n − α + kα − nα)2
< 0

dr (n)
k

dα
=

n

(n − α + kα − nα)2
> 0.

(4)
Fig. 1. A railroad in one-point perspective. The horizontal lines are the railroad ties
and the sides of the triangle are the tracks, converging at the horizon. The height of
the triangle is Q (not an axis) and the height of tie E is αQ . The letters A, B, C,D and
E denote both the ties and their apparent length.

The discount rate decreases with respect to space (spatial hyperbolic
discounting) and increases as the perspective gets ‘‘closer to the
ground’’ (larger α).

The results are slightly easier to interpret if we consider the
continuous space model. Define D as the actual distance between
the first tie and the anchor, Lanchor, and use s to denote the actual
distance between the first tie and an arbitrary tie. Taking the
continuous space limit of the discrete space discount factor and
discount rate gives the following result.

Proposition 2. In the continuous space model with spatial index s,
the discount factor and discount rate corresponding to position s, from
the perspective of the agent at s = 0, are

L (s) =
D (1 − α)

D (1 − α) + sα
and

r (s) = −

dL(s)
ds

L (s)
=

α

D (1 − α) + sα
.

(5)

The ‘‘Weber–Fechner law’’ states that human response to a
change in stimulus, such as sound or light, is inversely proportional
to the pre-existing stimulus. Heal (2001) notes that this law, if
applied to discounting, implies that the discount factor (a function
of time, t) is of the form t−K , where K is a positive constant. He calls
this ‘‘logarithmic discounting’’. The spatial analog is s−K .

Defining κ =
α

D(1−α)
and s̃ = 1 + κs, gives L


s̃ (s)


= s̃−1, a

special case of logarithmic discounting (with K = 1) and an altered
time scale. The discount rate,

r (s) =
κ

s̃2L

s̃ (s)

 =
κ

1 + κs
, (6)

depends on distance s and a single parameter, κ . A smaller value
of α or a larger value of D, both of which reduce κ , correspond to
an agent who resembles more the ubiquitous deity, and less the
person whose eyes are close to the ground. Smaller α or larger D
correspond to a higher spatial discount factor. Although the dis-
count rate (and factor) depend only on κ , knowing either the height
of the triangle (Q ) or the actual distance to the anchor (D) is not
enough to determine that parameter. We need to know both (or
some other combination of two parameters). By its construction,
one-point perspective always looks like a triangle. A smaller Q
means that we see distances less sharply, i.e. the discount rate is
larger. But to be able to interpret the exact effect of a smaller Q on
our perspective, we need a point of reference in actual space: D.

Iverson (2013) uses an extension of Golosov et al. (2014)
to study climate policy under non-constant discounting; see
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Fig. 2. Discount rates for κ = 3.95 × 10−2 (solid) and for this value doubled and
halved (dash and dotted).

Fig. 3. The triangles abd and ecd are similar. Their respective heights are H and h
and their respective bases are A −

A−E
2 and A

2 .

also Gerlagh and Liski (2012). This model is linear in state
variables (after a transformation), making it possible to obtain the
equilibriumsavings rate in closed form, as a function of discounting
parameters and the share of capital in production. Using the
discount rate in Eq. (6), but expressed as a function of time (years)
rather than distance, and a savings’ rate of 22%, Iverson’s formula
implies κ = 3. 95 × 10−2. Fig. 2 shows the graph of r (s) for this
value of κ and for twice and half this value.

2. Proof of the propositions

Proposition 1. The restriction that n ∈ M makes it easy to use an
inductive proof. Eq. (3) follows from Eq. (2), and Eqs. (4) are the
result of taking derivatives, so I need only confirm Eq. (2). After
stating some facts fromelementary geometry, I begin the induction
with n = 2, the first element ofM .

For an isosceles triangle with height Q and base A, the length of
any line E parallel to A at height H , with endpoints on the sides of
the triangle, is

E = A

Q − H

Q


= A (1 − α) . (7)

The first equality follows from the property of similar triangles and
the second uses α =

H
Q .

Let A be one tie and E an arbitrary subsequent tie, with apparent
distance between them equal to H . Relative to A, the apparent
height of the intersection of their diagonals (the dashed lines in
Fig. 1) is h, the solution to

h
A
2

=
H

A −
(A−E)

2

H⇒ h = A
H

A + E
. (8)

The first equality follows from the property of similar triangles, and
is evident from Fig. 3. The length of the tie through this point of
intersection, with endpoints on the sides of the trapezoid formed
by joining the endpoints of A and E, is C . The length of any segment
parallel to A, connecting the sides of the trapezoid, is a convex
combination of A and E. This fact implies

C =


1 −

h
H


A +

h
H
E =


1 −

A H
A+E

H


A +

A H
A+E

H
E

= 2A
E

A + E
= 2A

A (1 − α)

A + A (1 − α)
= 2A

1 − α

2 − α
. (9)

I begin the inductive chain using these results and the definition
of β(n)

i . They imply

β
(2)
1 =

C
A

=
2A 1−α

2−α

A
=

2 − 2α
2 − α

and

β
(2)
2 =

E
C

=
A (1 − α)

2A 1−α
2−α

= 1 −
1
2
α.

Setting n = 2 in Eq. (2) reproduces these two equations, for k =

1, 2.
Suppose now that Eq. (2) holds for some n ∈ M . I need to show

that this hypothesis implies that the equation also holds for the
next element of M, 2n. Note that L(2n)

2k = L(n)
k and L(2n)

2(k+1) = L(n)
k+1.

Doubling the superscript from n to 2n means that we need to
double the subscripts k and k + 1 in order to identify the same
two ties.

Doubling n means that between any two ties L(2n)
2k = L(n)

k and
L(2n)
2(k+1) = L(n)

k+1 we have a new tie, L(2n)
2k+1, that lies equidistant (in

real, not apparent distance) between L(2n)
2k and L(2n)

2(k+1). Using a result

contained in Eq. (9) (C = 2A E
A+E ), we know that the length of L(2n)

2k+1
is

L(2n)
2k+1 = 2L(2n)

2k

L(2n)
2(k+1)

L(2n)
2k + L(2n)

2(k+1)

= 2L(n)
k

L(n)
k+1

L(n)
k + L(n)

k+1

. (10)

For even indices, k = 2, 4, 6, . . ., the relation L(2n)
2k = L(n)

k
implies

L(2n)
k = L(n)

k/2. (11)

For odd indices, k = 1, 3, 5, 7, . . ., Eq. (10) implies

L(2n)
k = 2L(n)

(k−1)/2

L(n)
(k+1)/2

L(n)
(k−1)/2 + L(n)

(k+1)/2

. (12)

(Recall that L(m)
0 = 1 for all m ∈ M .)

With these intermediate results, we have, for k = 2, 4, 6, . . .

β
(2n)
k =

L(2n)
k

L(2n)
k−1

=
L(n)
k/2

2

L(n)
(k−2)/2


L(n)
(k)/2


L(n)
(k−2)/2+L(n)

(k)/2

(13)
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and for k = 1, 3, 5, 7, . . .

β
(2n)
k =

L(2n)
k

L(2n)
k−1

=

2

L(n)
(k−1)/2


L(n)
(k+1)/2


L(n)
(k−1)/2+L(n)

(k+1)/2

L(n)
(k−1)/2

. (14)

The hypothesis

β
(n)
k =

n − (n + 1 − k) α

n − (n − k) α
(15)

implies

L(n)
k = Π k

j=1


n − (n + 1 − j) α

n − (n − j) α


. (16)

For odd values of k, using Eqs. (14) and (16), we have

β
(2n)
k =

2

L(n)
(k−1)/2


L(n)
(k+1)/2


L(n)
(k−1)/2+L(n)

(k+1)/2

L(n)
(k−1)/2

=

2

L(n)
(k−1)/2

 
L(n)
(k+1)/2



L(n)
(k−1)/2 + L(n)

(k+1)/2


L(n)
(k−1)/2

=

2

L(n)
(k+1)/2



L(n)
(k−1)/2 + L(n)

(k+1)/2



=

2Π (k+1)/2
j=1


n−(n+1−j)α
n−(n−j)α


Π

(k−1)/2
j=1


n−(n+1−j)α
n−(n−j)α


+ Π

(k+1)/2
j=1


n−(n+1−j)α
n−(n−j)α



=

2


n−

n+1− k+1

2


α

n−

n− k+1

2


α


1 +


n−

n+1− k+1

2


α

n−

n− k+1

2


α

 =
2n − 2αn − α + αk

2n − 2αn + αk
.

Comparing the last expressionwith the right hand side of Eq. (2)we
see that the two are identical, apart from the fact that the index n
in Eq. (2) now appears as 2n, because we have doubled the number
of ties.

For k even, we have

β
(2n)
k =

L(n)
k/2

2

L(n)
(k−2)/2


L(n)
(k)/2


L(n)
(k−2)/2+L(n)

(k)/2

=

Π
k−2
2

j=1


n−(n+1−j)α
n−(n−j)α


+ Π

k
2
j=1


n−(n+1−j)α
n−(n−j)α


2Π

k−2
2

j=1


n−(n+1−j)α
n−(n−j)α



=

1 +


n−

n+1− k

2


α

n−

n− k

2


α


2

=
2n − 2αn − α + αk

2n − 2αn + αk
.

We obtain the same result as for the case of k even. We have thus
established that if the formula in Eq. (2) is valid for n ∈ M , it is also
valid for 2n ∈ M , recognizing that it is necessary to replace n by 2n
in the formula. This completes the inductive proof.

Remark 1. Given the simplicity of the formula in Eq. (2), it would
be astonishing if it failed for any positive integer n, not merely for
the elements ofM . I have restricted attention to the setM in order
to produce a simple inductive proof.

Proposition 2. Using Eqs. (1) and (2)

L(n)
j = L(n)

j−1
n − (n + 1 − j) α

n − (n − j) α
H⇒

L(n)
j − L(n)

j−1 = L(n)
j−1


n − (n + 1 − j) α

n − (n − j) α
− 1


= L(n)

j−1


α

−n + αn − αj


.

(17)

Let the real distance from L0 to Lanchor be D. If Lanchor is the n’th
tie from L0 then the distance between ties is ε =

D
n . Dividing the

second line of Eq. (17) by ε gives

L(n)
j − L(n)

j−1

ε
= L(n)

j−1


α

−nε + αnε − αjε


= L(n)

j−1


α

−D + αD − αδ


,

where δ = jε, the distance between the first and the j’th tie. Letting
ε → 0 gives

dL (δ)

ds
= L (δ)


α

−D + αD − αδ


,

where L (δ) = limε→0 L
(n)
j−1. Integrating this expression, using

L (0) = 1, gives the first part of Eq. (5). The second part of that
equation uses the definition r = −

dL
dt L

−1.
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